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Fault Attacks

• Fault attacks occur as intentional disturbance 
of a micro-processor 

– To exploit the secret keys of crypto modules.

– To take control of the micro-processor actions.
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Fault Attack Process 

• Fault attack vectors include two main steps:

– Fault measurement – the process to get faulty data

• Fault Injection.

• Fault effect observation. 

– Fault analysis – techniques to process faulty and 
unaltered information 

• E.g., DFA, DFIA.
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Fault Attack Countermeasures 

• Fault attack countermeasures attempt to prevent an 
attacker from observing the effect of injected faults.

– Shielding to physically block fault injection 

– Sensors to detect fault injections

• E.g., temperature, EM, voltage anomaly sensors.

– Redundancy for fault detection

• E.g., error-correcting codes (hardware), multi-versioning (software). 

FDTC'17 4



 Hardware countermeasures
– Overhead impact silicon area and performance.
– Increase the hardware design life cycle.
– Limited flexibility.

 Software countermeasures (timing and spatial code redundancy)

– Overhead impact memory footprint, code size, and register pressure, 
i.e., performance 

• E.g., run crypto algorithm twice, duplicate instructions

– Tedious and error-prone deployment of the countermeasures.
– Highly flexible.
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Motivation
Type  Overhead Cost Flexibility Efficacy

Hardware High High Low High

Software High Moderate High Low

Table 1: Existing countermeasures on a yardstick.

Recent research has shown that multiple fault injections can 
break redundancy techniques in algorithm or instruction level ‐

refer to Yuce et al. in FDTC’16 



• Rationale 
– Rely on the mechanism of automatic vectorization 

(SIMDization) to convert instruction duplication into vector 
operations.

– Vector units are ubiquitous in modern micro-processors
• Intel x86 – SSE, AVX
• ARM - NEON

• Expected outcome
– Reduced performance penalty compared to instruction 

duplication.
– Elevated fault coverage due to a reliable insertion of the 

mitigation with an enhanced version of the auto-vectorizer of 
the compiler: CAMFAS.
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CAMFAS
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 ALU instructions: Duplicated and their data is placed in SIMD registers.
 Memory instructions: Memory addresses are duplicated using gather and scatter.
 Branches: Condition computation is duplicated. PC update is not checked.
 Calls: Function calls are not duplicated, but some library calls are duplicated if they 

have the equivalent SIMD prototypes in LLVM IR (e.g. sqrt, pow, etc.).

CAMFAS Framework
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ALU Instruction Duplication

B B’ C C’Replicate

A’ = B’ + C’ A = B + CShuffle 

+1/0/‐1 +1/0/‐1Compare

A’ = B’ + C’A = B + CVector operation

There is an error if one 
of the fields is non-zero

Original B CA



• Only addresses are protected.
 Load instruction: gather.
 Store instruction: address is checked before store.

• Data can also be checked at the cost of more overhead
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Memory Instruction Duplication

Original: D = Mem[A]
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• Shuffle + Compare.

• Error checking code only inserted at selected positions to 
reduce the performance overhead.
 Before stores.

 Before function calls.

 Before conditional branches.
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Error Checking Insertion

A==A’ A’==A

A’ A

A A’
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Fault Injection Simulation

• Use Pin tool to collect dynamic instruction trace.
• Randomly pick a fault position in trace file.

– Pick an instruction 
– Flip the chosen bit

• Repeat fault injection 1000 times for each crypto algorithm.

Crypto
algorithm

ip1, regs_i, regs_o
ip2, regs_i, regs_o
ip3, regs_i, regs_o
…
ipn, regs_i, regs_o

Pin Tool

Trace File

Rand(1, n)
ip1, regs_i, regs_o
ip2, regs_i, regs_o
ip3, regs_i, regs_o
…
ipn, regs_i, regs_o

1 0 0 … 1 0
Rand(regs_i)

Regs_i[1]

Rand(0, 31)

1 0 0 … 1 0

 pick a register  pick a bit

1 0 0 … 0 0
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Evaluation

• CAMFAS can also be applied to other micro-processors 
support vector extensions.
– e.g. ARM processors w/ NEON

Experimental Platform

CPU Intel Xeon PhiTM 7210 with AVX‐512 SIMD extension
Memory 16GB

OS Ubuntu Server 16.04 with Linux‐4.4.0 kernel

Compiler 
framework

LLVM 4.0

Target Libgcrypt‐1.7.6
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Cipher Execution Results

• Detected: program terminates due to fault being detected.
• Incomplete: execution fails without generating attackable output.
• Masked: program completes normally and produces correct output.

• Corrupted: program completes normally and produces faulty output.

The fault provides useful information to 
an attacker for its fault analysis step
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Fault Coverage

N: No fault detection
O: CAMFAS without memory protection
W: CAMFAS with memory protection

Almost full coverage 
with memory protection!

• The remaining corrupted cases 
are mainly caused by faults 
injected to error checking code
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Performance overhead

With memory protection: 2.2x.
Without memory protection: 1.7x.



Discussion

• Differential Fault Analysis (DFA)
– Requires both correct and faulty cipher texts.
– CAMFAS detects incorrect result and prevents the generation of 

faulty cipher text.

• Differential Fault Intensity Analysis (DFIA)
– Relies on the bias of fault behavior.
– CAMFAS effectively prevents faulty output from being 

propagated.

• Single-Glitch Attack
– Injects clock glitches at precisely controlled timing and 

pipeline stages to thwart redundancy-based countermeasures
– CAMFAS makes the attack more difficult as duplication and 

error checking are inserted at the IR level
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Conclusions
• CAMFAS is a redundancy-based countermeasure implemented in 

LLVM infrastructure.
• CAMFAS exploits SIMD units in modern micro-processors to mitigate 

fault attacks.
• CAMFAS provides high fault coverage while keeps a moderate 

performance penalty.

Future directions
• Extend CAMFAS to thwart side-channel attacks.
• New micro-architectural features to mitigate fault attacks.
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Thank you!


