
CAMFAS: A Compiler Approach to Mitigate
Fault Attacks via Enhanced SIMDization

Zhi Chen1, Junjie Shen1, Alex Nicolau1, Alex Veidenbaum1

Nahid Farhady Ghalaty2 and Rosario Cammarota3

1University of California, Irvine
2Accenture Cyber Security Technology Labs, Virginia, USA

3Qualcomm Research, San Diego, USA

Fault Attacks

• Fault attacks occur as intentional disturbance
of a micro-processor

– To exploit the secret keys of crypto modules.

– To take control of the micro-processor actions.

FDTC'17 2

Fault Attack Process

• Fault attack vectors include two main steps:

– Fault measurement – the process to get faulty data

• Fault Injection.

• Fault effect observation.

– Fault analysis – techniques to process faulty and
unaltered information

• E.g., DFA, DFIA.

FDTC'17 3

Fault Attack Countermeasures

• Fault attack countermeasures attempt to prevent an
attacker from observing the effect of injected faults.

– Shielding to physically block fault injection

– Sensors to detect fault injections

• E.g., temperature, EM, voltage anomaly sensors.

– Redundancy for fault detection

• E.g., error-correcting codes (hardware), multi-versioning (software).

FDTC'17 4

 Hardware countermeasures
– Overhead impact silicon area and performance.
– Increase the hardware design life cycle.
– Limited flexibility.

 Software countermeasures (timing and spatial code redundancy)

– Overhead impact memory footprint, code size, and register pressure,
i.e., performance

• E.g., run crypto algorithm twice, duplicate instructions

– Tedious and error-prone deployment of the countermeasures.
– Highly flexible.

FDTC'17 5

Motivation
Type Overhead Cost Flexibility Efficacy

Hardware High High Low High

Software High Moderate High Low

Table 1: Existing countermeasures on a yardstick.

Recent research has shown that multiple fault injections can
break redundancy techniques in algorithm or instruction level ‐

refer to Yuce et al. in FDTC’16

• Rationale
– Rely on the mechanism of automatic vectorization

(SIMDization) to convert instruction duplication into vector
operations.

– Vector units are ubiquitous in modern micro-processors
• Intel x86 – SSE, AVX
• ARM - NEON

• Expected outcome
– Reduced performance penalty compared to instruction

duplication.
– Elevated fault coverage due to a reliable insertion of the

mitigation with an enhanced version of the auto-vectorizer of
the compiler: CAMFAS.

FDTC'17 6

CAMFAS

FDTC'17 7

LLVM
compliable
source code

LLVM IR
front‐end

optimization

SIMD‐based
Instruction
redundancy

Instruction
identification

Redundancy/
Err. checking

Remove scalar
Instruction

Fault
tolerant

executable

 ALU instructions: Duplicated and their data is placed in SIMD registers.
 Memory instructions: Memory addresses are duplicated using gather and scatter.
 Branches: Condition computation is duplicated. PC update is not checked.
 Calls: Function calls are not duplicated, but some library calls are duplicated if they

have the equivalent SIMD prototypes in LLVM IR (e.g. sqrt, pow, etc.).

CAMFAS Framework

FDTC'17 8

ALU Instruction Duplication

B B’ C C’Replicate

A’ = B’ + C’ A = B + CShuffle

+1/0/‐1 +1/0/‐1Compare

A’ = B’ + C’A = B + CVector operation

There is an error if one
of the fields is non-zero

Original B CA

• Only addresses are protected.
 Load instruction: gather.
 Store instruction: address is checked before store.

• Data can also be checked at the cost of more overhead

FDTC'17 9

Memory Instruction Duplication

Original: D = Mem[A]

...

M
em

or
y

D D’

Gather
A

dd
r:

A

A
dd

r:
A’

• Shuffle + Compare.

• Error checking code only inserted at selected positions to
reduce the performance overhead.
 Before stores.

 Before function calls.

 Before conditional branches.

FDTC'17 10

Error Checking Insertion

A==A’ A’==A

A’ A

A A’

FDTC'17 11

Fault Injection Simulation

• Use Pin tool to collect dynamic instruction trace.
• Randomly pick a fault position in trace file.

– Pick an instruction
– Flip the chosen bit

• Repeat fault injection 1000 times for each crypto algorithm.

Crypto
algorithm

ip1, regs_i, regs_o
ip2, regs_i, regs_o
ip3, regs_i, regs_o
…
ipn, regs_i, regs_o

Pin Tool

Trace File

Rand(1, n)
ip1, regs_i, regs_o
ip2, regs_i, regs_o
ip3, regs_i, regs_o
…
ipn, regs_i, regs_o

1 0 0 … 1 0
Rand(regs_i)

Regs_i[1]

Rand(0, 31)

1 0 0 … 1 0

 pick a register pick a bit

1 0 0 … 0 0

FDTC'17 12

Evaluation

• CAMFAS can also be applied to other micro-processors
support vector extensions.
– e.g. ARM processors w/ NEON

Experimental Platform

CPU Intel Xeon PhiTM 7210 with AVX‐512 SIMD extension
Memory 16GB

OS Ubuntu Server 16.04 with Linux‐4.4.0 kernel

Compiler
framework

LLVM 4.0

Target Libgcrypt‐1.7.6

FDTC'17 13

Cipher Execution Results

• Detected: program terminates due to fault being detected.
• Incomplete: execution fails without generating attackable output.
• Masked: program completes normally and produces correct output.

• Corrupted: program completes normally and produces faulty output.

The fault provides useful information to
an attacker for its fault analysis step

FDTC'17 14

Fault Coverage

N: No fault detection
O: CAMFAS without memory protection
W: CAMFAS with memory protection

Almost full coverage
with memory protection!

• The remaining corrupted cases
are mainly caused by faults
injected to error checking code

FDTC'17 15

Performance overhead

With memory protection: 2.2x.
Without memory protection: 1.7x.

Discussion

• Differential Fault Analysis (DFA)
– Requires both correct and faulty cipher texts.
– CAMFAS detects incorrect result and prevents the generation of

faulty cipher text.

• Differential Fault Intensity Analysis (DFIA)
– Relies on the bias of fault behavior.
– CAMFAS effectively prevents faulty output from being

propagated.

• Single-Glitch Attack
– Injects clock glitches at precisely controlled timing and

pipeline stages to thwart redundancy-based countermeasures
– CAMFAS makes the attack more difficult as duplication and

error checking are inserted at the IR level
FDTC'17 16

Conclusions
• CAMFAS is a redundancy-based countermeasure implemented in

LLVM infrastructure.
• CAMFAS exploits SIMD units in modern micro-processors to mitigate

fault attacks.
• CAMFAS provides high fault coverage while keeps a moderate

performance penalty.

Future directions
• Extend CAMFAS to thwart side-channel attacks.
• New micro-architectural features to mitigate fault attacks.

FDTC'17 17

FDTC'17 18

Thank you!

