U CI University of
California, Irvine

CAMFAS: A Compiler Approach to Mitigate
Fault Attacks via Enhanced SIMDization

Zhi Cheni, Junjie Shen?!, Alex Nicolau!, Alex Veidenbaum?!

Nahid Farhady Ghalaty? and Rosario Cammarota?®

tUniversity of California, Irvine
2Accenture Cyber Security Technology Labs, Virginia, USA
3Qualcomm Research, San Diego, USA

QUALCOANW accenture

High performance. Delivered.

| uCwvie
Fault Attacks

e Fault attacks occur as intentional disturbance
of a micro-processor

— To exploit the secret keys of crypto modules.

— To take control of the micro-processor actions.

FDTC'17 2

| uCwvie
Fault Attack Process

« Fault attack vectors include two main steps:

— Fault measurement - the process to get faulty data

e Fault Injection.

* Fault effect observation.

— Fault analysis - techniques to process faulty and
unaltered information

 E.g., DFA, DFIA.

FDTC'17 3

| uCwvie
Fault Attack Countermeasures

e Fault attack countermeasures attempt to prevent an
attacker from observing the effect of injected faults.

— Shielding to physically block fault injection

— Sensors to detect fault injections

 E.g., temperature, EM, voltage anomaly sensors.

— Redundancy for fault detection

 E.g., error-correcting codes (hardware), multi-versioning (software).

FDTC'17 4

Motlvatlon

Hardware High High High
Software High Moderate High Low

Table 1: Existing countermeasures on a yardstick.

Recent research has shown that multiple fault injections can
break redundancy techniques in algorithm or instruction level -

refer to Yuce et al. in FDTC’16

= Software countermeasures (timing and spatial code redundancy)

— Overhead impact memory footprint, code size, and register pressure,
I.e., performance
* E.g., run crypto algorithm twice, duplicate instructions

— Tedious and error-prone deployment of the countermeasures.
— Highly flexible.

FDTC'17 5

e
CAMFAS

 Rationale

— Rely on the mechanism of automatic vectorization
(SIMDization) to convert instruction duplication into vector
operations.

— Vector units are ubiquitous in modern micro-processors
« Intel x86 - SSE, AVX
« ARM - NEON

* Expected outcome

— Reduced performance penalty compared to instruction
duplication.

— Elevated fault coverage due to a reliable insertion of the
mitigation with an enhanced version of the auto-vectorizer of
the compiler: CAMFAS.

FDTC'17 6

CAMFAS Framework

(2
LLVM LLVM IR SIMD-based LLVM IR Fault
compliable front-end Instruction back-end tolerant
source code optimization redundancy optimization executable
d)

Instructlon Redundancy/ Remove scalar
|dent|f|cat|on Err. checking Instruction

ALU instructions: Duplicated and their data is placed in SIMD registers.
Memory instructions: Memory addresses are duplicated using gather and scatter.
Branches: Condition computation is duplicated. PC update is not checked.

Calls: Function calls are not duplicated, but some library calls are duplicated if they
have the equivalent SIMD prototypes in LLVM IR (e.g. sqgrt, pow, etc.).

FDTC'17 7

ALU Instruction Duplication
Original) — [o

Replicate (SRS (R
D
i]

Vector operation

A=B+C A=B+C

e
Shuffle N =B +C A=B+C

Compare

There is an error if one
of the fields is non-zero

FDTC'17

I —
Memory Instruction Duplication

 Only addresses are protected.

= Load instruction: gather.
= Store instruction: address is checked before store.

 Data can also be checked at the cost of more overhead

Original: D = Mem[A]

Memory

FDTC'17 9

I —
Error Checking Insertion

o Shuffle + Compare.

A A
\ A A A A

A A

e Error checking code only inserted at selected positions to
reduce the performance overhead.

= Before stores.
= Before function calls.

= Before conditional branches.

FDTC'17 10

Fault Injection Simulation

« Use Pin tool to collect dynamic instruction trace.

 Randomly pick a fault position in trace file.
— Pick an instruction - pick a register = pick a bit

— Flip the chosen bit

* Repeat fault injection 1000 times for each crypto algorithm.

Crypto
algorithm

Pin Tool

\N

ipl, regs_i, regs o
ip2, regs_i, regs o
ip3, regs_i, regs o

ipn, regs_i, regs_o

Trace File

Rand(1, n)

\N

ipl, regs_i, regs o
ip2, regs_i, regs o
ip3, regs_i, regs o

ipn, regs_i, regs_o

FDTC'17

100 .. 0O
Rand(0, 31)
Rand(regs_i)
100 .. 10
Regs_i[1]

11

Evaluation
CPU Intel Xeon Phi™ 7210 with AVX-512 SIMD extension
Memory 16GB
OS Ubuntu Server 16.04 with Linux-4.4.0 kernel
Compiler LLVM 4.0
framework
Target Libgcrypt-1.7.6

 CAMFAS can also be applied to other micro-processors
support vector extensions.
— e.g. ARM processors w/ NEON

FDTC'17 12

I —
Cipher Execution Results

 Detected: program terminates due to fault being detected.
* Incomplete: execution fails without generating attackable output.
 Masked: program completes normally and produces correct output.

o Corrupted: program completes normally and produces faulty output.

FDTC'17 13

I
Fault Coverage

[Corrupted Bl Masked Incomplete [Detected

1o ":gv'—EF?““"gt"Dﬁ-—gv—gr
S N - i | Almost full coverage
§ 1NN !LL AN AN \\ | with memory protection!
S 40 i NS aly .
3 ol |+ The remaining corrupted cases
- are mainly caused by faults

o

Injected to error checking code
NOW NOW NOW NOW NOW NOW NOW

LR P A A
Cryptographic algorithms

| Approach | Detected | Incomplete | Masked | Corrupted | N: No fault detection
o d AR 15% | 23.33% O: CAMFAS without memory protection
(0] 45.37% 44.43% 5.83% 34 % . .)
W 46.5% 49 729 340% |T0736% W: CAMFAS with memory protection

FDTC'17 14

| UChvine
Performance overhead

3 | | | | | | | | | | | |
mprivate with g/s oprivate w1thout g/s o public with g/s-pubhc without g/s
25| _ B B _] 8
c
B - . =
g,]
2 L a u L
) L n L
7! N |
1.5]
1 5

) a2 X NS W X D AL et
\ VAN (LA NN NI\ g\ oST ae
QP T QeP T b T b T s T g T (O O @\/C’ 6@ 6@0 6 0 ‘6 GO

Cryptographic algorithms

With memory protection: 2.2x.
Without memory protection: 1.7x.

FDTC'17 15

| UCwine
Discussion

» Differential Fault Analysis (DFA)
— Requires both correct and faulty cipher texts.

— CAMFAS detects incorrect result and prevents the generation of
faulty cipher text.

« Differential Fault Intensity Analysis (DFIA)
— Relies on the bias of fault behavior.
— CAMFAS effectively prevents faulty output from being
propagated.
« Single-Glitch Attack

— Injects clock glitches at precisely controlled timing and
pipeline stages to thwart redundancy-based countermeasures

— CAMFAS makes the attack more difficult as duplication and
error checking are inserted at the IR level

FDTC'17 16

| UCwine
Conclusions

 CAMFAS is a redundancy-based countermeasure implemented in
LLVM infrastructure.

 CAMFAS exploits SIMD units in modern micro-processors to mitigate
fault attacks.

« CAMFAS provides high fault coverage while keeps a moderate
performance penalty.

Future directions
« Extend CAMFAS to thwart side-channel attacks.
 New micro-architectural features to mitigate fault attacks.

FDTC'17 17

Thank youl!

FDTC'17

18

